Часть 6 из 54 В начало
Для доступа к библиотеке пройдите авторизацию
Огонь по своим внутри мозга
В 2008 году Бет Стивенс заканчивала свою докторскую диссертацию в Стэнфорде, ей было 37 лет, когда они с Робом и их годовалой дочерью снова собрали вещи и вернулись на восток страны. Она заняла свою нынешнюю должность в Бостонской детской больнице и Гарвардском медицинском колледже. Робу предложили работу менеджера по связям с общественностью в Бостонской больнице, и они поздравили друг друга с тем, что теперь работают в одном учреждении.
С одной стороны, это выглядело, как возвращение домой. С другой, несмотря на то, что до ее родного городка Брокстона было всего сорок минут езды, Бостон оказался совершенно другим миром, и руководство собственной лабораторией в Гарварде – мечтой, о которой Бет раньше не могла и помыслить.
Когда она впервые увидела свою лабораторию в только что построенном центре естественных наук при Бостонской детской больнице, ее впечатления остались незабываемыми.
– Это было огромное, совершенно новое и пустое пространство, – говорит она. – Люди, которых я пригласила на работу, еще не приехали. Я стояла там совершенно одна и удивлялась тому, что все это принадлежит нам. Но мне еще предстояло решить, что я собираюсь делать с этим.
Поскольку она уже посвятила себя исследованию микроглиальных клеток, то была уверена в одном:
– Я хотела точно узнать, какую роль микроглия играет в мозге человека, чтобы помогать людям, которые страдают психическими расстройствами.
Бет пригласила к себе только одного исследователя с докторской степенью – Дори Шафер, которую, по ее словам, «переманила у крупных шишек из Гарварда. Я была очень рада видеть ее в нашей команде». Она также наняла одного из своих аспирантов и лабораторного техника. «Для начала было вполне достаточно четырех человек».
Когда Бет приступила к работе в своей лаборатории, она точно не знала, уничтожает ли микроглия нейронные синапсы. Однако у нее были веские основания так думать: она знала, что микроглиальные клетки не находятся в пассивном состоянии, ожидая отмирания очередных нейронов, а потом унося их, как обычные мусорщики. Микроглия постоянно исследовала мозг в поиске даже слабых нарушений нормального функционирования.
Стивенс и другие ученые уже видели, что когда микроглия ощущала самые незначительные повреждения или изменения нейронов, она немедленно предпринимала активные наступательные действия. Клетки микроглии, словно пауки, окружали подозрительный нейрон, потом втягивали свои многочисленные отростки, похожие на ветки деревьев, и превращались в маленькие амебообразные капли. Вскоре после этого нейронные синапсы бесследно исчезали.
Возможно ли, что эти с виду незначительные клетки фактически окружали и поглощали нейронные синапсы?
– Мы могли видеть, что микроглия очень динамична; ее отростки активно прикасались к синапсам, проверяли их и устремлялись к местам повреждений, – говорит Бет. – Но мы не знали, имеет ли микроглия прямое взаимодействие с синапсами, или каким-то образом приводит к их исчезновению. Никто раньше не задавался таким вопросом.
За год до этого Бет вместе с Беном Барресом из Стэнфорда доказала, что когда синапсы мозга оказываются помеченными иммунными молекулами (комплементами), то они исчезают. Могли ли микроглиальные клетки распознавать синапсы, помеченные комплементами, и если да, то как они избавлялись от них?
Если теория Бет была верной, это означало, что в период раннего развития микроглия отвечала за формирование человеческого мозга. Но ей не давал покоя тот самый вопрос, который она впервые задала еще в Стэнфорде: а если происходит что-то еще?
– Что, если впоследствии, – в подростковом или даже в зрелом возрасте, – ошибочно включается тот самый процесс сокращения синапсов, который был полезен на ранней стадии развития? Но теперь это уже не полезный, а вредный процесс?
Если микроглия «нечаянно» уничтожает синапсы, которые не должны пострадать, то это похоже на то, как определенные виды белых кровяных клеток, служащие первой линией обороны иммунной системы, ведут себя при физических расстройствах. Как вы помните, когда иммунная система определяет внешнюю угрозу для организма, – инфекцию, токсины, вирусы, патогены, травму или хроническое эмоциональное расстройство, наполняющее организм стрессовыми биохимическими соединениями, – то белые кровяные клетки превращаются в каплевидные макрофаги, которые разыскивают и устраняют любых внешних агрессоров. Но иногда иммунная система входит в режим перевозбуждения и «не знает», когда нужно остановить воспалительные или разрушительные клетки. Это вредит организму и провоцирует нарушение функции щитовидной железы, как у Кэти, псориаз и коллагеноз, как у ее матери, и комбинированный диабет, как у ее дяди Пола. По этой же причине возникают такие заболевания, как волчанка, системная склеродермия, рассеянный склероз и недуг, который я перенесла дважды: синдром Гийена-Барре.
Классический случай «огня по своим», – неконтролируемая реакция иммунной системы.
Именно этот вопрос больше всего интересовал Бет Стивенс. Если микроглиальные клетки, как теперь предполагалось, были «макрофагами мозга», изменяющими нейронные связи, то возможно, как и белые кровяные клетки, они не всегда действовали правильно. Что, если наряду с устранением отмерших или поврежденных нейронов, микроглия иногда окружает и уничтожает здоровые нейронные синапсы?
– Такие заболевания, как шизофрения, болезнь Альцгеймера и аутизм, совершенно разные по времени развития, генетической предрасположенности и частям мозга, которые они поражают, – объясняет Бет. – Однако возможно ли существование общего канала их распространения, и возможно ли, что их общим знаменателем является микроглия, которая вызывает потерю синапсов?
Интересно, что нарушения мозговой функции, от депрессии до расстройства обучения, считались следствием изменения нейронной архитектуры: определенные синапсы просто не срабатывали или соединялись неправильным образом.
– Что, если эти почти не изученные глиальные клетки находились в центре событий? – говорит Бет. Она разводит руками, возбужденно продолжая свои объяснения. – Можно представить, что если сокращение синапсов оказывается слишком незначительным или чрезмерным, то все идет вкривь и вкось! Либо слишком много синапсов, либо недостаточная синаптическая связность. Принимая во внимание, как работает мозг, даже малейший дисбаланс синаптической связности потенциально приводит к психоневрологическим или нейродегенеративным расстройствам, а также к нарушению когнитивной функции.
Возможно ли, что иногда микроглиальные клетки, которые являются скульпторами и защитниками мозга, – его ангелами-хранителями, – становятся преждевременными убийцами мозга?
Возможно ли, что ученые в течение нескольких десятилетий упускали из виду нечто столь грандиозное и удивительное?
Никто не знал.
Если бы Бет смогла подтвердить свою революционную гипотезу, то это коренным образом изменило бы наше понимание здоровья мозга, от утробы до могилы.
Ради доказательства своей гипотезы она сначала должна была подробно разобраться в этих маленьких клетках.
Во время ее работы над докторской диссертацией в лаборатории Бена Барреса исследовательская группа из Стэнфорда пользовалась моделью зрительной системы мозга (зрительным нервом и сетчаткой) для демонстрации исчезновения синапсов, помеченных комплементами. Их утрата в сетчатке приводит к таким расстройствам, как макулярная дистрофия, глаукома и слепота[37]. Поэтому Бет продолжила использовать зрительную систему животных, чтобы лучше разобраться в действии микроглиальных клеток.
Она предположила, что если микроглия действительно обволакивает и разрушает синапсы, то можно увидеть их остатки внутри самой микроглии.
– Это был большой вопрос, – говорит Бет. – Можем ли мы найти фрагменты синапсов внутри микроглии? Моя коллега Дори нашла остроумный способ доказать, так ли это на самом деле.
Дори Шафер, которая теперь была еще и старшим преподавателем нейробиологии в Массачусетском медицинском колледже и в Институте нейропсихиатрических исследований Брудника, объясняет их эксперимент, который теперь считается основополагающим исследованием в области неврологии.
Для наглядного изучения взаимодействия микроглии с синапсами Дори вводила краситель в глаза мышей[38]. Затем этот краситель выводился из нейронов глаза по нервным волокнам глубоко в мозг. Таким образом, по словам Дори, синапсы были подсвечены ярко-красным флуоресцентным цветом, а микроглия – ярко-зеленым. Это позволяло отчетливо видеть их.
Весь процесс поиска способа для четкого рассмотрения взаимодействия синапсов и микроглии внутри мозга занял около года.
– Однажды в выходной день я находилась одна в лаборатории и делала снимки микроглии и синапсов, – вспоминает Дори. – Я уже миллион раз смотрела в микроскоп. Потом вдруг увидела красные структуры – синапсы, – сиявшие как маленькие флуоресцентные точки, и эти красные точки были поглощены зеленой микроглией.
Дори была потрясена:
– Я только и думала: мы оказались правы! Микроглия пожирает синапсы! Я собственными глазами увидела подтверждение.
Она не сразу рассказала Бет о своем открытии.
– Мне хотелось быть абсолютно уверенной. Поэтому в тот же день я повторила эксперимент еще несколько раз, но каждый раз видела одно и то же: синапсы внутри микроглии. Она поглощала их и разрывала на куски.
Бет вспоминает, как Дори в понедельник прибежала в ее кабинет с фотоснимками в руках.
– Они там! – воскликнула она. – Синапсы действительно находятся внутри микроглии. Мы можем это видеть!
– Это был незабываемый момент, – вспоминает Бет. – Клетки микроглии действительно были крошечными Пекменами внутри мозга, которые пожирали синапсы! Мы находились на краю чего-то великого и удивительного, чего-то по-настоящему нового и чрезвычайно важного для понимания роли микроглии в развитии расстройств мозга.
Бет и Дори засучили рукава и принялись за работу.
– Мы обе были полны энтузиазма, но это оказалась действительно трудная и напряженная работа, – вспоминает Бет. Тогда она была беременна своей дочерью Зоей и имела еще одного малыша дома. – Мы с Дори понимали, что должны вкалывать изо всех сил. У нас хватало адреналина, но мы осознавали, что работа должна быть методичной, поэтому не жалели времени на контрольные эксперименты и анализ данных. Мы хотели сделать все правильно и опубликовать результаты до того, как кто-нибудь другой сделает это.
Исследование оказалось нелегкой задачей. Следующие дни и недели напомнили Бет о начале ее научной карьеры в лаборатории Дуга Филдса. Когда она отрывалась от работы и смотрела на часы, время часто близилось к полуночи.
– Иногда просто не имело смысла уходить домой, – говорит она.
Однако кое-что изменилось с тех пор, как Бет выполняла техническую работу в лаборатории Филдса. Ей больше не приходилось спать на куче одежды под столом для совещаний.
– Дори подарила мне надувной матрас, – со смехом вспоминает она. – Я пристраивала его под рабочим столом, и, когда было уже совсем поздно, просто падала на него.
– Роб помогал мне во всем, где возможно, – продолжает она. – Он понимал важность того, чем мы занимались. Он объяснял Рили, что я иногда не возвращалась домой по вечерам, потому, что мы занимаемся работой, которая должна помочь множеству больных людей.
В 2011 году Бет и Дори отправили статью с описанием своих открытий на экспертное рецензирование и публикацию. Бет недавно родила свою вторую дочь Зои, и теперь у нее было двое маленьких детей. А Дори вышла замуж.
Это оказался переломный год. В 2012 году их фундаментальную статью опубликовали в журнале «Нейрон». Это было первое научное исследование, где предлагались доказательства[39], что комплементы помечали синапсы сигналом «съешь меня», а микроглиальные клетки «выпалывали» и поглощали их. Они безоговорочно доказали, что микроглия может поглощать и преобразовывать здоровые синапсы.
Не удивительно, что научный мир взорвался от такой новости. Впоследствии их статью называли самой значительной в этом журнале за 2012 год.
Тем временем исследователи из европейской лаборатории молекулярной биологии в Италии[40] показали, что микроглия может проявлять особую активность в гиппокампе, имеющем важнейшее значение для памяти и настроения. Обволакивая и удаляя здоровые синапсы в нем, микроглия приводила к утрате нейронных связей в той части мозга, которая, по общему убеждению, тесно связана с депрессией, тревожными расстройствами, аутизмом, обсессивно-компульсивным расстройством и болезнью Альцгеймера. Как показывала позитронно-эмиссионная томография (ПЭТ), при этих заболеваниях наблюдалась заметная дистрофия гиппокампа.
Эти открытия разрешили тайну многих десятилетий. При многих психоневрологических и нейродегенеративных заболеваниях головного мозга здоровые синапсы исчезали; нейроны массово погибали. Но никто не мог понять почему.
Внезапно общая картина стала совершенно ясной.
Микроглия старалась защищать мозг и сдледить за его здоровьем, как это делают белые кровяные клетки в организме. Однако когда микроглиальные клетки замечали какую-то неполадку, – избыток стрессовых гормонов, проникнувший вирус, токсины, аллергены или патогены, они часто проявляли чрезмерную активность и устраняли все синапсы, находившиеся рядом с поврежденным участком.
Это понимание изменило все.
В 2015 году Бет Стивен получила «грант для гениев» от фонда Макартуров за открытие роли микроглиальных клеток в сокращении синапсов на этапе раннего развития и при расстройствах мозговой функции.
Одна многоликая клетка
До сих пор мы были сосредоточены в основном на «темной стороне» микроглии.
Однако у этих крошечных клеток есть и светлая. Когда мозг находится в состоянии гомеостаза (иными словами, когда микроглия не имеет оснований для излишней агрессивности), эти клетки ведут себя совершенно иным, позитивным, образом. В здоровом мозге микроглия вырабатывает питательные вещества для стимуляции роста нейронов и образования новых синапсов там, где это необходимо. Они даже синтезируют нейропротекторы для «ремонта» неисправных нейронов[41].
book-ads2